3rd Foot and Ankle Symposium Arthritic disorders of the Foot and Ankle

Imaging

Christian Pfirrmann MD, MBA

christian.pfirrmann@balgrist.ch

Outline

Arthritic disorders of the Foot and Ankle

Imaging of Ligaments

Imaging of Cartilage

Standard New developments

Standard New developments

Alignment

Standard New developments

MR Imaging of Ankle Ligaments

MR Technique:

- High Field (1.5 or 3T)
- Dedicated coil
- Standard T2w Fast spin echo (FSE) images = turbo spin echo (TSE)
- Slice thickness 2-4mm
- Matrix 512 at least in one plane
- Field of view <150 mm

Lateral Ligaments

Posterior Talofibular Ligament PTFL

Normal

Scaring

Charles J. Ruth J Bone Joint Surg Am. 1961;43:229-239.

balarist

University of Zurich^{uz∺}

Duc et al. Eur Radiol 2007 May;17(5):1162-71.

Axial T2 Turbo-Spinecho

Duc et al. Eur Radiol 2007 May;17(5):1162-71.

Posterior Talofibular Ligament PTFL

Strongest Ligament, Tears of the PTF are rare

Superficial: Tibionavicular Ligament

Not always present (55%)

Most injuries of the medial collateral ligament occur at the proximal attachment of the TNL and TSL.

uniklinik

Superficial: Tibiospring Ligament

Always present

Most injuries of the medial collateral ligament occur at the proximal attachment of the TNL and TSL.

Superficial: Tibiotalar Ligament

Deep: Anterior tibiotalar Ligament

Not always present (55%)

Deep: Posterior tibiotalar Ligament

Strongest ligament. Longitudinal striations

Tears

Posterior Tibiotalar Ligament Tibiospring ligament Tibiocalcaneal ligament

Tear: Tibionavicular Ligament

Imaging of Ligaments: New Developments

3D isovolxel datasets (0.7-0.3 mm)

Ligaments of the Lisfranc joint

3 Lisfranc ligaments

- Dorsal Lisfranc ligament (dC1-M2)
- Interosseous Lisfranc ligament (pC1-M2)
- Plantar Lisfranc ligament (pC1-M2,3)

• 13 Tarsometatarsal (TMT) ligaments

7 dorsal TMTs

(dC1-M1, dC1-M2 (= *dorsal Lisfranc ligament*), dC2-M2, dC3-M2, dC3-M3, dC-M4, dC-M5)

 6 plantar TMTs (pC1-M1, pC1-M2,3 (= plantar Lisfranc ligament), pC2-M2, pC3-M3,4, pCub-M4, pCub-M5)

• 10 Intermetatarsal (IMT) ligaments

- 3 dorsal IMTs
- 4 interosseous IMTs
- 3 plantar IMTs

Examples of MR images - Asympt

Examples of MR images - Patients

Examples of MR images - Asympt

Tarsometatarsal (TMT) ligaments

Examples of MR images - Asympt

Intermetatarsal (IMT) ligaments

3 dorsal IMTs 4 interosseous IMTs 3 plantar IMTs

Cartilage

MR of Cartilage

- ➢ SE PD/T2
- FSE PD FS
- SPGR
- DEFT
- FS-SSFP
- LCSSFP
- ➢ FEMR
- > FFE
- FFE EPI
- ➢ FFE MTC
- FLASH
- DESS3D WE
- MEDIC 3D
- 3D VIBE

Numerous cartilage sequences

MR of Cartilage

- ➢ SE PD/T2
- FSE PD FS
- SPGR
- DEFT
- FS-SSFP
- LCSSFP
- ➢ FEMR
- > FFE
- ➢ FFE EPI
- ➢ FFE MTC
- FLASH
- DESS3D WE
- MEDIC 3D
- 3D VIBE

.... the ideal sequence is still missing

MR Imaging of Cartilage

- SE PD/T2
- FSE PD FS
- SPGR
- DEFT
- FS-SSFP
- LCSSFP
- ➢ FEMR
- ► FFE
- ➢ FFE EPI
- ➢ FFE MTC
- FLASH
- DESS3D WE
- MEDIC 3D
- > 3D VIBE

Goals:

High resolution

High contrast between cartilage and joint fluid

Cartilage

The Challenge:

uniklinik

- Cartilage thickness Tibia 1.1 1.6mm
 Talus 0.9 1.6mm
- When ankle OA is already obvious clinically and on plain radiographs, cartilage degeneration is usually advanced

Spin Echo Sequences

T2 TSE

T1 SE

T1 SE with Arthrography

Spin Echo Sequences

Workhorse: Intermediate weighted/PD TSE with fat sat

Gradient Echo Sequences

Dedicated cartilage sequences:

FLASHTrueFISPDESSAdvantages: Thin Slices, 3D Acquisition

..... all sequences have similar diagnostic performance

3D Isovoxel SPACE

New development:

Combination of PD TSE fat sat and 3D acquisition: Voxel size 0.5mm

MR Imaging of Cartilage

- SE PD/T2
- FSE PD FS
- SPGR
- DEFT
- FS-SSFP
- LCSSFP
- ➢ FEMR
- ► FFE
- ➢ FFE EPI
- ➢ FFE MTC
- FLASH
- DESS3D WE
- MEDIC 3D
- > 3D VIBE

Goals:

High resolution

High contrast between cartilage and joint fluid

Imaging of Cartilage

High Resolution, High Contrast: CT Arthography

CT-Arthrography: Subtalar Joint

Postoperative: Mosaic plasty

Arthro MRT vs Arthro CT

	MR-Arthrography		CT-Arthrography	
	Tibia	Talus	Tibia	Talu
Accuracy	73%	69%	87%	88%
Interobserver	72%	75%	87%	88%

New Developments

"biochemical" MR techniques

T2 mapping T2* mapping dGEMRIC (delayed Gadolinium enhanced MRI of cartilage)

allow quantitative grading of cartilage degeneration

T2 Mapscollagen content and orientation/hydrationdGEMRICglycosaminoglycan content

Biochemical Imaging

Quantitative T2 imaging collagen content and orientation/hydration

Welsch GH, et al. 2008. Skeletal Radiol 37: 519–522.

Biochemical T2* MR quantification of ankle arthrosis in pes cavovarus

Krause, F. G. (2010), Journal of Orthopaedic Research, 28: 1562–1568

Delayed gadolinium-enhanced MRI of cartilage in the ankle

dGEMRIC Signal drop proportional to glycosaminoglycan content

Domayer, S. E. (2010), JMRI, 31: 732–739.

Alignment: Bases

Alignment

lateral foot radiographs:

- calcaneal pitch angle
- lateral talocalcaneal angle
- tibiocalcaneal angle
- lateral talus-first metatarsal angle
- metatarsal stacking angle
- naviculocuboid overlap
- medial-lateral column ratio anteroposterior foot radiographs
- talonavicular coverage angle
- anteroposterior talus-first metatarsal angle

Hindfoot Alignment

Hindfoot Alignment View

Long Axial View

Measurement

1.Calcaneal axis (as described by Cobey¹)
2.Medial calcaneal contour
3.Lateral calcaneal contour
4.Moment arm (as described by Saltzman²)

Ref.:

1. Cobey JC. Posterior roentgenogram of the foot. Clin Orthop Relat Res. 1976;(118):202-207.

2. Saltzman CL, El-Khoury GY. The hindfoot alignment view. Foot Ankle Int. 1995 Sep. 1;16(9):572-576.

Measurement

1.Calcaneal axis (as described by Cobey¹)
2.Medial calcaneal contour
3.Lateral calcaneal contour
4.Moment arm (as described by Saltzman²)

Ref.:

1. Cobey JC. Posterior roentgenogram of the foot. Clin Orthop Relat Res. 1976;(118):202-207.

 Saltzman CL, El-Khoury GY. The hindfoot alignment view. Foot Ankle Int. 1995 Sep. 1;16(9):572-576.

Measurement

1.Calcaneal axis (as described by Cobey¹)
2.Medial calcaneal contour
3.Lateral calcaneal contour
4.Moment arm (as described by Saltzman²)

Ref.:

1. Cobey JC. Posterior roentgenogram of the foot. Clin Orthop Relat Res. 1976;(118):202-207.

2. Saltzman CL, El-Khoury GY. The hindfoot alignment view. Foot Ankle Int. 1995 Sep. 1;16(9):572-576.

Hindfoot Alignment View

Mal positioning of 2° = Error of up to 11°

Buck F, AJR in press

Long axial view

а

Buck F, AJR in press

Interreader Agreement

	Measurement Technique		Interreader Agreement Intraclass Correlation Coefficient	
	iew	Calcaneal Axis (Cobey)	0.80	
	Ifoot ent V	Medial Calcaneal Contour	0.80	
	Hinc	Lateral Calcaneal Contour	0.90	
	96AN	Moment Arm (Saltzman)	0.90	
	1	Calcaneal Axis (Cobey)	0.98	
ere the time	Axia ew	Medial Calcaneal Contour	0.97	
ALA DOSP	Long	Lateral Calcaneal Contour	0.98	
. 6.		Moment Arm (Saltzman)	0.94	
	-Br			

Interreader agreement better on long axial view

Axis Angle (Cobey) least prone to errors due to mal positioning

Buck F, AJR in press

uniklinik

Cross Sectional imaging ?

Most posterior coronal image showing the tibia

Angle between calcaneal axis to tibial axis

Possible to see >10° valgus or any varus deformity on

Reference: Long axial view,

Buck F, Submitted

Angle Measurement in 3D Space ?

EOS ultra low dose 2D/3D Scanner:

- Whole body x-Ray scanner
- Low dose (10%)
- Simultaneous biplanar image acquisition in weight baring position
- Measurements of angles and distances in 3D Space
- 3D-Reconstruction

3D Measurement Hindfoot Alignment

Outline

Arthritic disorders of the Foot and Ankle

Imaging of Ligaments

Imaging of Cartilage

Standard New developments

Standard New developments

Alignment

Standard New developments

