

Hindfoot Deformity and The Concept of Asymmetric Ankle Arthritis 9-9-11

Anish R. Kadakia MD

Chief – Division of Foot and Ankle University of Michigan Department of Orthopedic Surgery

Disclosure

Synthes – Consultant Ascension - Consultant

I have no potential conflicts with this presentation.

Overview

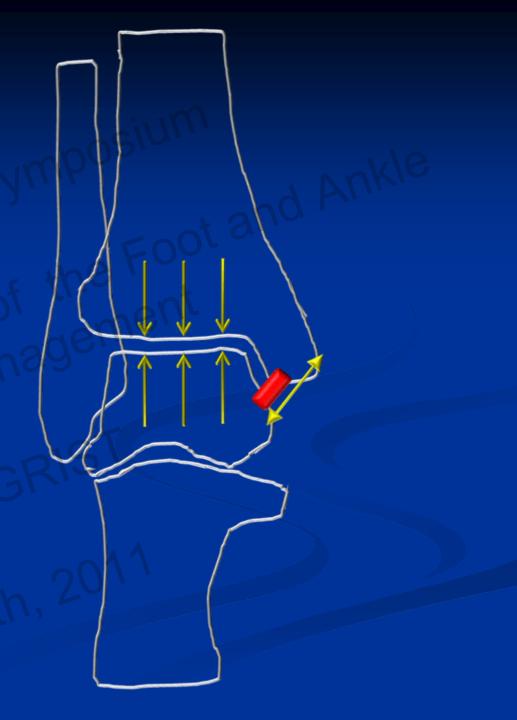
Valgus

Varus

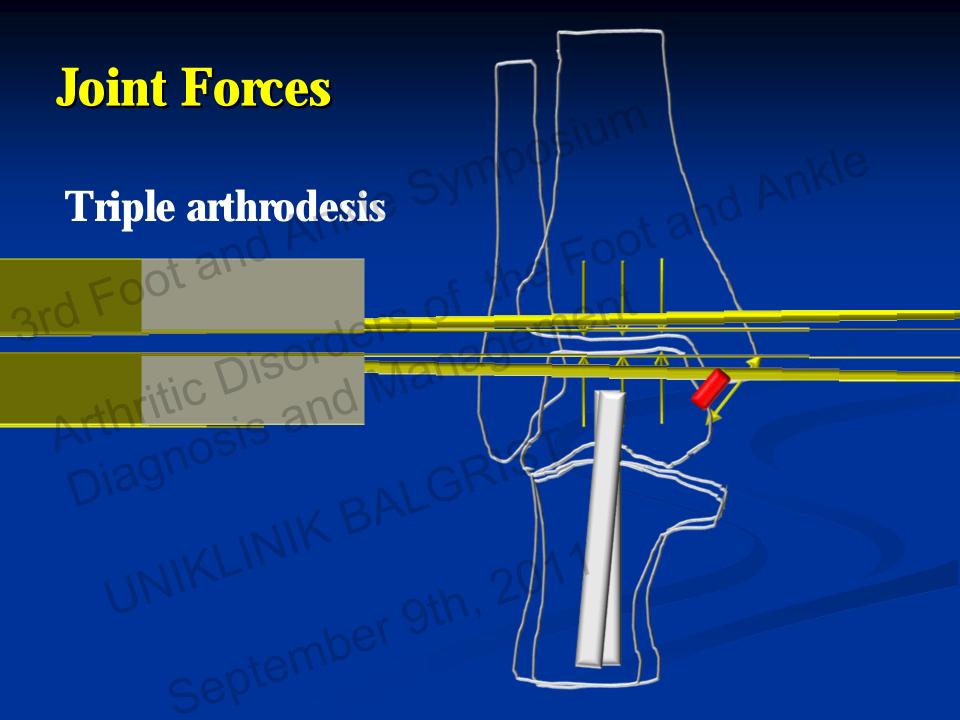
Etiology of Deltoid Dysfunction

- Posterior Tibial Tendon Dysfunction
 - Stage IV
- Triple with valgus malunion

(Song SJ, Lee S, O'Malley et. al. Deltoid ligament strain after correction of acquired flatfoot deformity by triple arthrodesis.

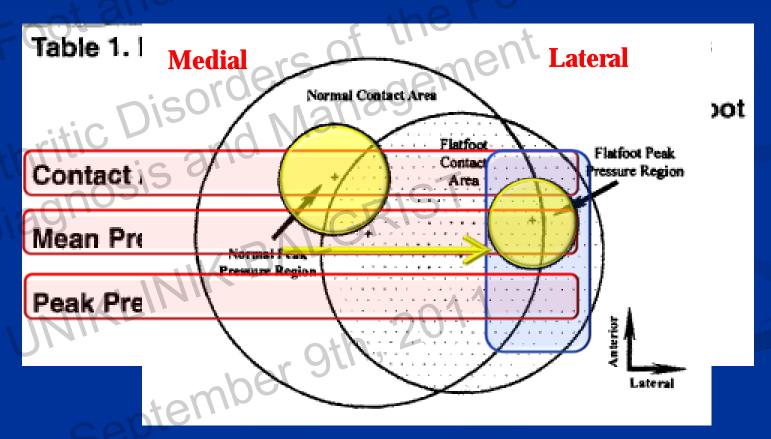

Foot Ankle Int. 21(7):573-577, 2000)

- Increased strain with triple
- Recommended
 - Neutral position of triple
 - Medial slide if needed



- Assymetric load
 - Abnormal forces
 - **Lateral**
 - Increased pressure on articular cartilage
 - Accelerated wear
 - Medial
 - Increased tension on Deltoid ligament
 - Attenuated/Incompetent medial restraint
 - Decreased pressure on subchondral bone
 - Osteopenic bone

Minimal Deformity


Joint Forces Severe Deformity

Tibiotalar Joint Contact Pressure

Cadaveric Study with simulated flatfoot

(Friedman et. al. FAI 2001)

Bad flatfoot = Stage IV?

- Signficant pes planus
 - Deltoid may not see stress if hindfoot mobile

Bad flatfoot ≠ Stage IV

Severe hindfoot deformity without significant ankle valgus

Why Stage IV?

- Transfer of stress from Calcaneus to Talus
 - **Persistent ligamentous connection**
 - Hindfoot DJD
 - Iatrogenic (Triple)

Treatment Strat - Nonop

Cadaveric Model – Medial slide calc ost vs. UCBL (Havenhill TG, Toolan BC, and Draganich LF. FAI 2005)

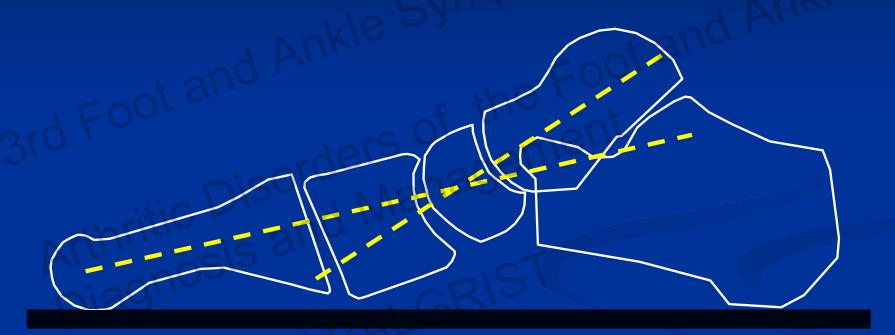
Table 1: Mean (SEM) values of contact characteristics for the intact foot, flatfoot, and flatfoot corrected by orthosis and osteotomy

Variable SIS 2	Intact	Flatfoot	Flatfoot + orthosis	Flatfoot + calcaneal osteotomy
Contact Area (mm²)	281 (11,2)	252 (25.0)	261 (14.6)	252 (17.7)
Mean Pressure (MPa)	8.39 (0.16)	8.54 (0.19)	8.23 (0.13)	8.38 (0.14)
Peak Pressure (MPa)	10.46 (0.28)	10.85 (0.34)	10.23 (0.28)	10.68 (0.37)
Displacement of Global Contact		Α.	1	
Area (mm)*		-00		- I
x	0	-2.1/(0.6)	-1.0 (0.5)	J −1.6 (0.7)
у	o Q	0 (0.2)	0.3 (0.2)	-0.2 (0.2)
Displacement of Peak Pressure	hel Y			
(mm)*	10			- I
x C6010.	0	-5.5 (1.6)	-1.2 (2.1)	_3.6 (1.9)
y 50P	0 (-0.8 (1.5)	− 0.7 (1.2)	-1.4 (0.9)

Treatment Strat - Nonop

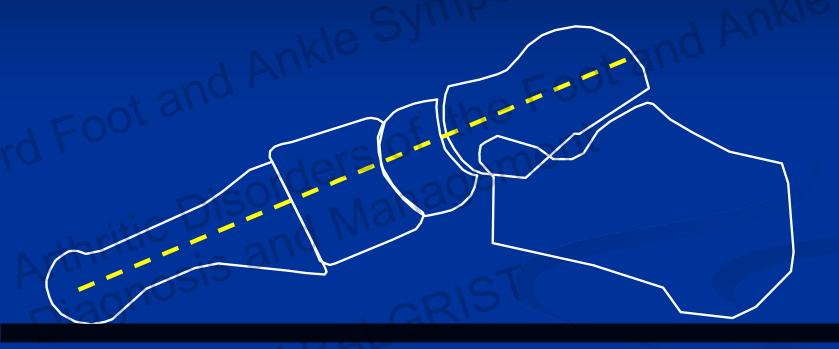
■ Cadaveric Model — Medial slide calc ost vs. UCBL (Havenhill TG, Toolan BC, and Draganich LF. FAI 2005)

Arthritic Disorders	Peak ressure	Displacement of Peak Pressure X	
Intact vs. FF	=.027	p = .01	
Intact vs. FF+O p	= .037	NS	
Intact vs. CO	NS_{0}	NS	
FF vs. FF+O p	₩1.007	p = .035	
FF vs. CO	NS	p = .044	
FF+Ovs. CO p	= .036	NS	


Treatment Strat - Nonop

- Focus is to shift peak pressure towards neutral
 - UCBL
 - Flexible
- Minimize strain across the deltoid ligament
 - AFO/Arizona
 - Control hindfoot
 - Shift peak pressure
 - Stabilize Ankle
 - Decrease strain upon deltoid

Treatment Strat - Operative


- Goals
 - Decrease peak pressure
 - Shift location of peak pressure to neutral
 - Minimize strain on Deltoid

Concept of Medial Column Stabilization

Unstable Medial Column - precludes normalization of hindfoot alignment

Concept of Medial Column Stabilization

Arthrodesis of both the N-C joint and the 1st TMT is required to correct the deformity

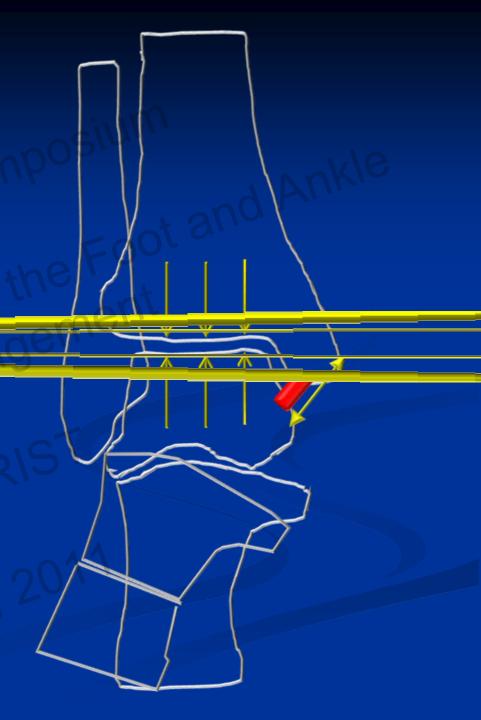
Outcomes

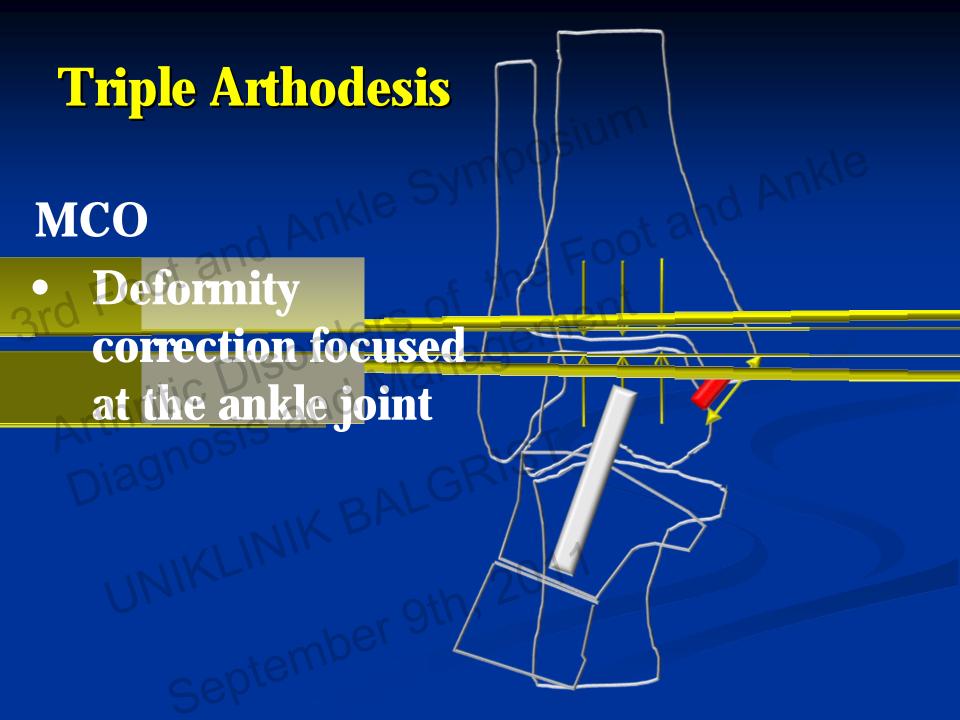
Isolated Medial Column Stabilization

(Greisberg et al. CORR: 435 (197-202 – 2005)

- Radiographic outcomes only
- 19 total 13 patients with combined NC and 1st TMT for AAFD
- Improvement in both the Lateral 1st Talometatarsal angle and Talonavicular coverage

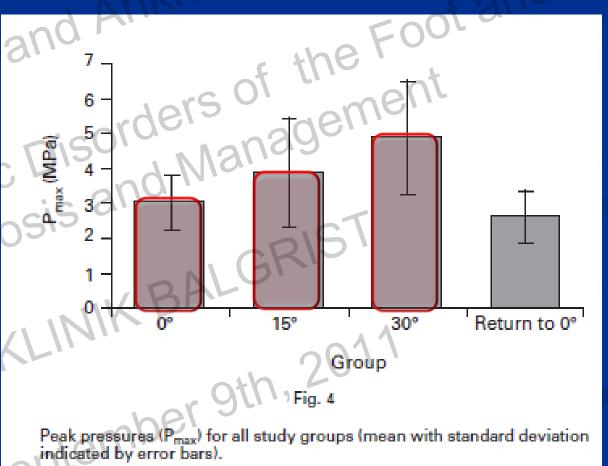
Outcomes





MCO

Correction occurs through ST joint with minimal effect of Ankle

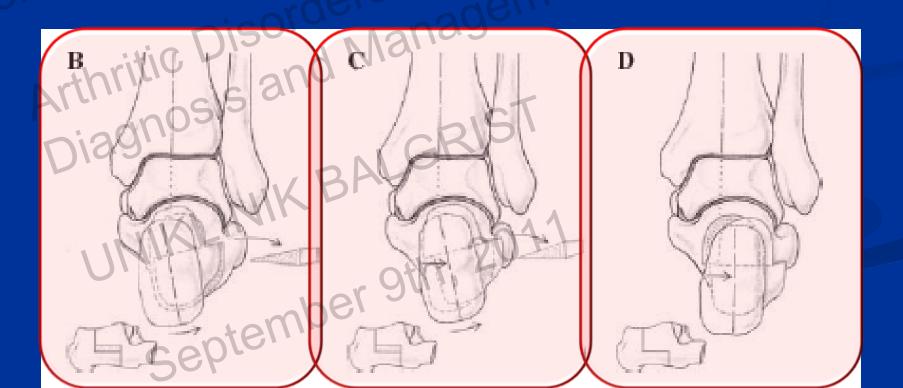

- Surgical Strategies Overall Concepts
 - Flexible
 - Medial Column stablization critical
 - Correct Hindfoot deformity
 - Minimize stress on the deltoid ligament
 - Decrease and realign peak pressure
 - Rigid
 - Triple arthrodesis with Medial slide
 - Decrease strain on the deltoid ligament
 - **Correct residual forefoot varus**

- Assymetric load
 - Abnormal forces
 - Medial
 - Increased pressure on articular cartilage
 - Accelerated wear
 - Lateral
 - Increased tension on ATFL/CFL
 - Attenuated/Incompetent lateral restraint


- Not just the opposite of a Valgus deformity
 - No instability between the talus and calcaneus
 - Increasing deformity => Increased stress on CFL
 - HSMN must be considered
 - Associated tendon transfer may be required
 - Deformity may progress over time despite bony rebalancing
 - Limited hindfoot eversion
 - Orthotic management difficult

■ Increased Peak Pressure (Krause F, et. al. JBJS Br. 2007)

Medial Translation of the Peak Pressure


(Krause F, et. al. JBJS Br. 2007)

Ankle Pressure s/p Calc Osteotomy

(Krause F, et. al. Foot Ankle Int. 2010)

Cavovarus model - Anaylsis of 3 osteotomies

- Z lateral closing wedge with lateralization >
- Z with isolated lateral translation >
- Z lateral closing wedge
- Each showed significant pressure shift laterally.

Take home - Shift is key.

Address Hindfoot Only?

Ligament Reconstruction and Calcaneal Osteotomy for Osteoarthritis of the Ankle

Ho Seong Lee, MD, PhD; Keith L. Wapner, MD; Soo Sung Park, MD; Jin Sam Kim, MD; Dong Ho Lee, MD; Dong Wook Sohn, MD Seoul, Korea

- Operative Intervention 22.3 mos mean f/u
 - Joint debridement
 - Medial ligament release
 - Lateral collateral reconstruction (Brostrom)
 - Lateral calcaneal slide osteotomy

Results

Table 3: Preoperative and last followup clinical and radiological parameters

						MU						
Table 3: Preoperative and last followup clinical and radiological parameters												
inkle and												
								nt o			(10)	EAS
Talar tilt (degrees)					Clear space ratio Heel alignment ratio Takakura stage score							
	E001	4	Talai t	iit (degrees)	Clear space ratio Treer angilillent rati				0 Takar	Kura stage		
ord	A	ge	pre	post	-c 01	post	-01	post	pre	post	pre	post
No.	Gender (yea	ırs)	op	op O	pre op	op	pre op	ор	ор	op	op	op
1	F 57		715	01	10010	0.84	0.57	0.49	3a	2	54	87
2	F 63	C. N	3	3	0.13	0.8	0.47	0.22	3b	2	26	80
3	F 56		6	2470	0.13	0.6	0.33	0.17	2	1	56	97
4	F 49		55	3	0	0.93	0.65	0.58	3a	1	21	83
5	F 60	Q	7	5	0	1.01	0.61	0.36	2	2	54	87
6	$M \sim 61$	1	11	8	0	0.82	0.83	0.43	3b	2	25	78
7	M 64		13	10	0	0.75	1.19	0.47	3b	2	27	80
8	F 56	1	10	10	0.07	0.2	0.35	0.27	2	2	56	100
9	F 52	1	12	10	0.08	0.1	0.68	0.4	3b	3b	41	61
10	F 65	M	2	2	0.2	0.6	0.27	0.15	2	2	59	90
11	M 48	1	11	9	0	0.13	0.53	0.4	3b	3b	52	67
Mean	57.	4	7.4	5.9	0.06	0.62	0.59	0.36			42.8	82.7
SD	5.	9	4.4	3.5	0.07	0.32	0.26	0.14			15.1	11.6

SD: standard deviation

Address Hindfoot Only?

Address Hindfoot Only?

Conclusion

- Hindfoot Deformity is critical to evaluate in the setting of assymetric ankle arthritis
 - 2 primary causes
 - Collateral ligament strain and laxity
 - (Incongruent Joint)
 - Supra physiologic pressure on articular cartilage
 - (Congruent Joint)
 - Combined

Conclusion

- Valgus
 - Medial column stabilization
 - Medial slide osteotomy
 - May be used in flexible deformity (minimal shift on articular pressure)
 - Critical in triple arthrodesis
- Varus
 - Lateral slide calcaneal osteotomy
 - Proven to shift pressure laterally
 - **DF osteotomy 1**st metatarsal
 - In setting of DJD, perform both to "over-correct"
- Concomitant soft tissue reconstruction as indicated

