Imaging of Bone and Soft Tissue Tumors

Approach from a radiologist's point of view

Florian Buck Radiology

Patient Management

Patient Management

Patient Management

Jigsaw pieces provided by Radiologists

Consultant for state of the art imaging protocols and completeness of imaging studies to ensure optimal diagnostic yield

Dignity of a lesion \rightarrow Differential diagnosis

Resection planning, biopsy planning

Image guided biopsy

What's that? When can you biopsy that?

T1-weighted fat-saturated post KM

Correct Question would be:

I have a patient with a history of ..

-Is the imaging sufficient?
-What's the (differential) diagnosis?
-Is a biopsy needed?
-Is a biopsy feasible?

Diagnosis:

Stress Fracture with typical history of excessive sports training.

Teaching points:

- Stress fractures can mimick bone tumors and should never be biopsied.
- History is key!
- Imaging is always influenced by the patients history/differential diagnosis.

Imaging overkill

Radiologists know certain pathologies almost exclusively from plain radiographs!

- More images (MRI) do not imply more diagnostic security
- More images can divert from the important findings on plain films
- Well known benign lesion diagnosed on plain films can look malignant on MR images.

T1-weighted fat-saturated post KM

T1-weighted

- 1. Plain films Mandatory in 2 planes!
- 2. MRI Soft tissue
- 3. CT scan Osteolysis, matrix mineralization
- 4. PET-CT Whole body, staging, tumor viability
- 5. PET-MRI Research, indications to be defined

- Robust, old, well-known sequences
- Optimal planes depending on anatomy:
 - axial
 - second best
- Tagging with capsule on the skin if there is a small nodule or the like

- Anatomy
- Compartment
- Muscles
- Vessel & Nerves
- Fat Tissue

Γ1

STIR

- Additional information about aforementioned anatomical questions
- Fluid collections
- Skip lesions

- Tumor tissue
- Tumor size
- Necrosis
- Infiltration in adjacent structures

- Tumor tissue
- Tumor size
- Necrosis
- Infiltration in adjacent structures

Posttreatment (follow-up) MR imaging

Main focus on Follow-up MRI

- because of high rate of recurrence (about 50%)
- more examinations are performed as follow-up examinations than for treatment planning
- early recognition of recurrent disease is crucial for treatment

niversity of Ref.: Garner HW, Kransdorf MJ, Bancroft LW, Peterson JJ, Berquist TH, Murphey MD. Benign and **urich**^{12#} malignant soft-tissue tumors: posttreatment MR imaging. Radiographics. 2009;29(1):119–134.

Posttreatment (follow-up) MR imaging

Compare with pre-treatment images

As a general rule, the signal intensitiv and enhancement characteristics of a recurrent tumor typically mimics those of the original tumor.

At least primarily calcifying tumors should be imaged using radiographs also

niversity of Ref.: Garner HW, Kransdorf MJ, Bancroft LW, Peterson JJ, Berquist TH, Murphey MD. Benign and malignant soft-tissue tumors: posttreatment MR imaging. Radiographics. 2009;29(1):119–134.

Posttreatment (follow-up) MR imaging

Importance of patient history

- Radiation therapy or reconstructive surgery
 - → Alteration of imaging appearance of surgical bed in <u>a time-dependent manner</u>
- Many different types of changes....

urich^{™#} Ref.: Garner HW, Kransdorf MJ, Bancroft LW, Peterson JJ, Berquist TH, Murphey MD. Benign and malignant soft-tissue tumors: posttreatment MR imaging. Radiographics. 2009;29(1):119–134.

Posttreatment MR imaging

MR Imaging Findings	after Treatment of Soft-Ti	ssue Tumors	-10			
Treatment Modality and Effect	Findings	Time of Onset after Treatment	Prevalence			
Radiation therapy Marrow composition	Increased fat content in marrow	Complete marrow replacement at 6-8	Common			
	Radiation osteitis	Variable (reported averages are 9 and 42 months)	Approximately one-third to one-half of patients			
Soft-tissue change	Edemalike signal intensity of subcutaneous fat	Variable; maximum, 12–18 months	Common; returns to normal in 50% of patients in 2–3 years			
	Increased signal intensity of muscle	Variable; maximum, 12–18 months	Common; returns to normal in 50% of patients in 2-3 years			
Pseudotumor	Masslike area of abnormal enhancement	Average, 40 months (range, 11–61 months)	Limited data; approximately 5%-10%			
Radiation-induced sarcoma	Focal mass within the ir- radiated field	Typically, 8–12 years (range, 2–40 years)	Rare Tumor necrosis	Progressive decrease in in-	Usually 1 month	Common
Tumor hemorrhage	Increased internal signal	Usually 1 month	Common Surgery	tralesional enhancement	N'	
	ed images; may cause increase in tumor size	octC	Hemorrhage Seroma	Age dependent Fluidlike signal intensity	Immediately Variable; weeks to months	Common Common
			Normal myocutane-	Muscle atrophy	Immediately	100%
			and the second se	Fatty overgrowth Abnormal signal intensity of muscle	Immediately Immediately	100% In one-third of patients, abnormal fluid-sensitive signal intensity returns to normal within 2 years
				Abnormal contrast en- hancement	Immediately	Abnormal contrast enhance- ment seen in two-thirds of patients returns to baseline in one-third of patients within 18 months
			All modalities Tumor recurrence	Focal mass with signal	Generally early	Varies with grade of turoor.
			Turios recurrence	intensity mimicking that of the original tumor	Generally early	but overall around 50%

University of Zurich^{uz+}

of Ref.: Garner HW, Kransdorf MJ, Bancroft LW, Peterson JJ, Berquist TH, Murphey MD. Benign and malignant soft-tissue tumors: posttreatment MR imaging. Radiographics. 2009;29(1):119–134.

uniklinik

balaris

Posttreatment MR imaging

Radiation therapy

- Subcutaneous edema: Peaking at 12-18 month, in 50% normal over the ensuing 2-3 years
- Bone marrow change: 1-6 weeks after initiation of therapy, regeneration of bone marrow is rare
- Radiation osteitis: 8-49 months post initiation
- Muscle edema, Fibrosis, Seroma

Chemotherapy

• Initially chemotherapy may cause an increase in tumor size because of intralesional edema, hemorrhage, and necrosis

iversity of Ref.: Garner HW, Kransdorf MJ, Bancroft LW, Peterson JJ, Berquist TH, Murphey MD. Benign and malignant soft-tissue tumors: posttreatment MR imaging. Radiographics. 2009;29(1):119–134.

Recurrent tumor

Presence of discrete nodule or mass with signal characteristics that typically mirror those of the original tumor

Post-surgery

Metallic implants

Hematoma

Seroma

Soft tissue edema

Myocutaneous flaps

Post-radiation

Osteitis

- bone marrow edema
- fatty change
- Tumor necrosis

Strategies

- Full clinical history / surgery report
- Baseline MRI postsurgery for comparison purposes
- Advanced imaging techniques

64 keV

69 keV

88 keV

105 keV

optimal keV

Dual-energy CT: Monoenergetic extrapolation

Ref.: Bamberg F, et al. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011 Jul.;21(7):1424–1429.

Dual-energy CT: Monoenergetic extrapolation

Ref.: Bamberg F, et al. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011 Jul.;21(7):1424–1429.

80 Hz/Pixel

390 Hz/Pixel

Increasing Bandwidth

Posttreatment imaging: Optimal MRI

 Table 5 Checklist for reduction of implant-related artifacts in MR imaging

Position long axis of prosthesis parallel to the direction of the main magnetic field (B_0)

Avoid gradient echo sequences, use spin echo sequences Use fast/turbo spin echo instead of conventional spin echo sequences

Starting from the prosthesis, the region of interest should not be in the phase-encoding direction

Replace frequency-selective fat-saturated T2-weighted spin echo

images by STIR sequence

Reduce echo spacing in fast/turbo spin echo sequences

Increase echo train length

Reduce slice thickness

Increase sampling bandwidth

Increase matrix size (e.g., 512×512)

ncreasing Bandwidth

standard sequence

(turbo spin echo, high bandwidth)

WARP SPACE

(high bandwidth)

WARP TSE

new STIR IR

CT

uniklinik

balarist

primarily evaluated on plain films

NOT on MR images!

- Two most important aspects of evaluating a bone tumor are:
 - Tumor location
 - Patient age

NOT radiologic appearance!

This information alone is enough to narrow the differential diagnosis without even looking at any images!

Ref.: Miller TT. Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology. 2008 Mar. 1;246(3):662-674

- Criteria
 - Tumor localization (in the body)
 - Patient Age
- Specific radiographic features:
 - Tumor location (inside the bone)
 - Margins
 - Zone of transition
 - Periosteal reaction
 - Presence of a soft-tissue component

Most bone tumors often occur in a characteristic location in the skeleton

- axial versus appendicular skeleton
- long versus flat bones
- predilection for sites of rapid bone growth usually the metaphyseal region, e.g. osteosarcoma
- follow the distribution of red bone marrow, e.g. Ewing sarcoma

Non-ossifying Fibroma

well-defined lesion

ill-defined lesion

Type 1a – Geographic Lesion: Well-defined lucency with sclerotic rim.

Intraosseous lipoma

Iniversity of Ref.: Lodwick GS et al. Determining growth rates of focal bone lesions. Radiology 1980;134:577-583. uniklinik Miller TT et al. Bone tumors and tumorlike conditions... Radiology 2008 Mar. 1;246(3):662-674.

Type 1b – Geographic Lesion: Well-defined lucency without sclerotic rim and endosteal scalloping.

Iniversity of Ref.: Lodwick GS et al. Determining growth rates of focal bone lesions. Radiology 1980;134:577-583. uniklinik Miller TT et al. Bone tumors and tumorlike conditions... Radiology 2008 Mar. 1;246(3):662-674.

Type 1c – Geographic Lesion: III-defined lytic lesion with cortical disrupton. Codman triangle. New bone formation.

niversity of Ref.: Lodwick GS et al. Determining growth rates of focal bone lesions. Radiology 1980;134:577-583. uniklinik Miller TT et al. Bone tumors and tumorlike conditions... Radiology 2008 Mar. 1;246(3):662-674.

Type 2 – Moth-eaten Lesion: III-defined patchy lytic lesion with multilamellated periosteal reaction.

Iniversity of Ref.: Lodwick GS et al. Determining growth rates of focal bone lesions. Radiology 1980;134:577-583. uniklinik Miller TT et al. Bone tumors and tumorlike conditions... Radiology 2008 Mar. 1;246(3):662-674.

Type 3 – Permeated Lytic Lesion: Fine permeated pattern with ill-defined small patchy lucencies.

Ewing's Sarcoma

niversity of Ref.: Lodwick GS et al. Determining growth rates of focal bone lesions. Radiology 1980;134:577-583. uniklinik Miller TT et al. Bone tumors and tumorlike conditions... Radiology 2008 Mar. 1;246(3):662-674.

The most important piece of clinical information when assessing a bone tumor is the patient's age.

For example:

- Simple simple bone cysts and chondroblastomas occur in skeletally immature people
- Giant cell tumors in skeletally mature people
- Conventional osteosarcoma have two age peaks: In teenagers (de novo), in pagetic or previously irradiated bone, in adults older than 50 years

10 20 30 40 50 60

University of Zurich^{uz#}

Ref.: Miller TT. Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology. 2008 Mar. 1;246(3):662-674

The most important piece of clinical information when assessing a bone tumor is the patient's age.

For example:

- Malignant bone lesion in an adult <u>over 40</u> <u>years</u> old is much more likely to be:
 - metastatic carcinoma
 - myeloma
 - metastatic non-Hodgkin lymphoma rather than a primary bone sarcoma.

10 20 30 40 50 60

Ref.: Miller TT. Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology. 2008 Mar. 1;246(3):662-674

A lesion in a long bone may be characterized by its:

- Iongitudinal location
 - epipyseal
 - metaphyseal
 - diaphyseal

transverse location

- medullary
- cortical

Jniversity of

Zurich

juxtacortical

Ref.: www.radiologyassistant.nl

The margin of a lesion and type of periosteal reaction are indicators of lesion aggressiveness, but not necessarily of whether it is benign or malignant.

A well-defined lesion with a sclerotic rim and thick unilamellar periosteal reaction is the most innocuous appearance

A permeated pattern with spiculated periosteal reaction is the most aggressive.

Age	Well-defined	Fibrous Dysplasia	Any age, no periosteal reac	tion		
	3	Eosinophilic granuloma Enchondroma	Age under 30 Calcified matrix (except in p	halanges)		
<u> </u>	FG	Ciant Cell Tumor	Epiphysis closed, epiphysea abuts articular suface, nons	al location clerot margin		
0 - 10	SBC	Nof	Age under 30, juxtacortical			
		steoblastoma	Like ABC, located in spine			
NOF, C Fibr dy EG SBC ABC Chond CMF	NOF, Osteoblast	<mark>M</mark> etastasis Myeloma	Age over 40			
	FIDF dysplasia EG	ABC	Age under 30, expansile			
	SBC	SBC	Age under 30, centrally			
	ABC Chondroblast CMF	Hyperparathyroidism	Other signs of hyperparathy	roidism		
		nfection	Always included in differenti	al		
Gi Er 20 - 40 HF Os	Giant CT	Chondroblastoma	No calcified matrix	Well-defined Osteolytic		
	Enchondroma	CWF	Mention when considering N	Eccentric	Centrally	Must be < 30
	Chondrosarcoma (low grade) HPT - Brown tumor			GCT	SBC	EG - ABC - NOF SBC Chondroblastoma
	Osteblastoma			Epiphyseal		Age > 40
				Chondroblastoma GCT		metastasis
	Metastases			Geode, infection		geode, infection
40+	Myeloma			Exclude	Ca++	Multiple
	Geode			Fibrous Dysplasia	Enchondroma	FD, EG mets, myeloma
	la fa a fi a n			NOF, SBC	Osteomyelitis	enchondroma
All ages	Infection			Enchonoroma	Eosinophilic granul	Hyperparathyroidis

uniklinik

balarisi

Age	Well-defined
	B
0 - 10	EG SBC
10 - 20	NOF, Osteoblast Fibr dysplasia EG SBC ABC Chondroblast CMF
20 - 40	Giant CT Enchondroma Chondrosarcoma (low grade) HPT - Brown tumor Osteblastoma
40+	Metastases Myeloma Geode
All ages	Infection

Non-ossifying Fibroma Brown tumor - HPT

Age	Well-defined	ill-defined	
	31	1995	
0 - 10	EG SBC	EG - Ewing Osteosarcoma Leukemia	
10 - 20	NOF, Osteoblast Fibr dysplasia EG SBC ABC Chondroblast CMF	Ewing EG Osteosarcoma	
20 - 40	Giant CT Enchondroma Chondrosarcoma (low grade) HPT - Brown tumor Osteblastoma	Giant CT	
40+	Metastases Myeloma Geode	Metastases Myeloma Chondrosarcoma (high grade)	
All ages	Infection	Infection	

Ewing's Sarcoma

Metastases

Age	Sclerotic
0 - 10	Osteosarcoma
10 - 20	Osteosarcoma Fibr dysplasia EG Osteoid osteo Osteoblastoma
20 - 40	Enchondroma Osteoma Bone island Parosteal Sarcoma Healed lesions: - NOF, EG - SBC, ABC - Chondroblast
40+	Metastases Bone island Chondrosarcoma
All ages	Infection

LSMFT – liposclerosing myxofibrous tumor

Osteoid Osteoma

The presence of a soft-tissue component:

- suggests a malignant process
- typical tumors that often have a soft-tissue component:
 - osteosarcoma
 - Ewing's sarcoma
 - lymphoma

Do we need these criteria ... We need biospy anyway ...

Ref.: Hamers S. "Leave me alone lesions" des Knochens. Radiologie up2date 2002 Jul. 2;1-30.

uniklinik balarist

Yes, we need these criteria to:

 obviate biopsy of lesions that should not be biopsied

And also....

- know where biopsy should be performed (vital tumor tissue)
- plan the biopsy direction
- plan surgery

Surgery Planning

Leiomyosarcoma

- T1-weighted & T2-weighted sequences
- axial plane

T1

lateral

uniklinik

- Identify compartments
- Vessels
- Nerves

atera

T1

Leiomyosarcoma

- Identify compartments
- Vessels
- Nerves

lateral

uniklinik

T1

Leiomyosarcoma

- Identify compartments
- Vessels
- Nerves

lateral

Leiomyosarcoma

- Scrolling through the images
- Define compartments, vessels and nerves involved

lateral

uniklinik

Leiomyosarcoma

Bonopty

Spirotome

Coaxial Achieve "Snapper"

balarisi

Thank you for your attention!

