Foot & Ankle Surgery: common problems – current therapies Zurich, Sep 4, 2014

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

> Ankle arthrosis – from osteotomy to total ankle replacement

Fabian Krause, MD Department of Orthopaedic Surgery Inselspital, University of Berne Switzerland

5 UNIVERSITÄT BERN

Introduction

> ankle arthrosis

osteochoi resurfacing distraction arthroplasty

arthroscopy; debridement

5 UNIVERSITÄT

Introduction

- > asymmetric / focal arthrosis
 - recently more effort to restore neutral articular alignment
 early and aggressive realignment surgery to prevent or delay ankle arthrosis

b UNIVERSITÄT

Introduction

- > Indications for realignment surgery
 - existing or impending asymmetric / focal ankle arthrosis
 - congenital malalignment distal tibia
 - posttraumatic malunion after distal tibia-, malleolar-, and talus fractures
 - hindfoot deformity, e.g. cavovarus / planovalgus deformity
 - > 50% preserved articular surface
 - isolated osteochondral lesion
 - alignment for TAR and ankle arthrodesis

UNIVERSITÄT

Asymmetric ankle arthrosis

- > hindfoot deformity (varus / valgus) leads to increased ankle joint pressure and potentially to asymmetric arthrosis in the long-term^{1,2}
- > malalignment
 - isolated at single structural level (e.g. supramalleolar)
 - part of complex deformity with multiple structural levels involved (e.g. cavovarus deformity)

¹Krause F. et al. J Bone Joint Surg Br 2007;89(12):1660–5 ²Stufkens SA, et al. J Bone Joint Surg Br 2011;93-B:1232-9

DEDN

Introduction

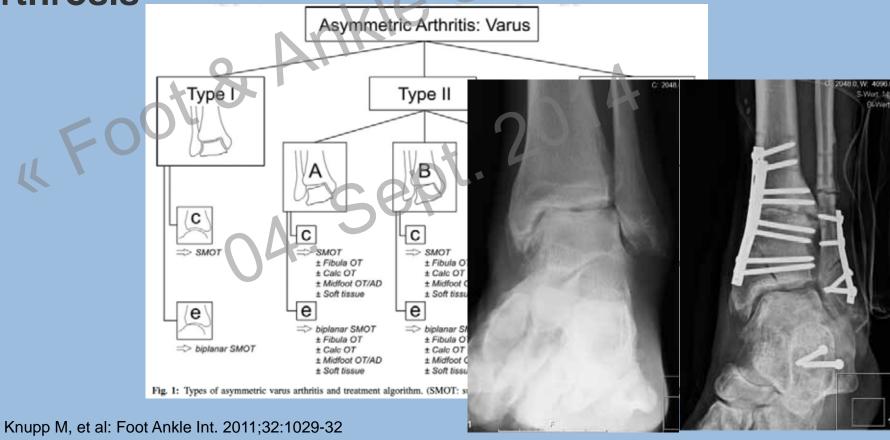
 Supramalleolar osteotomies for intraarticular malalignment (varus / valgus joint line)

 Calcaneal osteotomies for extraarticular malalignment (neutral joint line, varus / valgus hindfoot deformity)

UNIVERSITÄT BERN

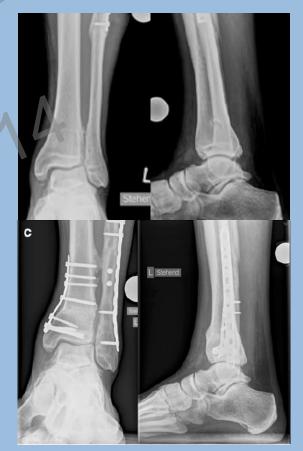
Diagnostic

- > weight-bearing radiographs
 - Ap and lateral foot, ankle and tibial shaft (full-length radiographs)
 - tibial articular surface angle(TAS,
 - 90 ± 3 degrees)
 - tibiotalar angle (TTA 0 ± 3 degrees)
 - hindfoot alignment view
 - both leg stance radiograph
- > MRI
- > SPECT CT



UNIVERSITÄT

Classification of intraarticular varus ankle arthrosis



Intraarticular valgus alignment

- > Medial closing supramalleolar osteotomy
- > Advantages
 - simple approach
 - ease of bone cut
 - reliable and rapid healing

- > Disadvantages
 - weakening of TP tendons

Intraarticular varus alignment

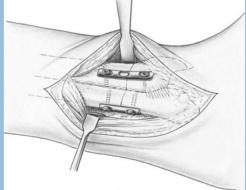
- > Medial opening supramalleolar osteotomy
- > Advantages
 - simple approach,
 - ease of bone cut
- > Disadvantages
 - Correction < 10 ° (fibula restriction)</p>
 - graft morbidity
 - potentially load increase in the medial ankle
 by tensioning of the medial extrinsic tendons¹

 $^{1}\text{Takakura Y}$ et al. J. Bone Joint Surg. 1998;80-A:213 – 218

UNIVERSITÄT

Medial opening supramalleolar osteotomy¹


- > time to union, no delayed or nonunion?
- AOFAS score improved significantly from 52 (range 22 to 83) to 73 (range 27 to 100)
- > VAS pain decreased from 4.4 (range 0-8) to 2.6 (range 0-7)
- > ROM increase 5 ° on average
- progression to end-stage arthrosis at average follow-up of 45 (range 15 to 88) months in 3/35 pts.
- > implant removal in 10/35pts


¹Pagenstert GI, et al. Clin Orthop Relat Res 2007;462:156–68.

Intraarticular varus alignment

- Lateral closing supramalleolar osteotomy
- > Advantages
 - Correction > 10 ° (no fibula restriction)
 - ease of fixation
 - reliable and rapid healing
- > Disadvantages
 - possibility of leg-length discrepancy
 - more soft-tissue dissection
 - weakening of peroneal tendons

 u°

UNIVERSITÄT BERN

Lateral closing supramalleolar osteotomy

- time to union 10 weeks (range 6 to 14), no delayed or nonunion
- > no measurable leg length discrepancy
- > (base of fibular wedge 6.7 mm (range 4 to 12)
- AOFAS score improved significantly from 48 (range 21 to 67) to 74 (range 51 to 88)
- little arthrosis progression at average follow-up of 56 (range 15 to 88) months in 2/9 pts.
- > implant removal in 2/9 pts

Harstall R et al. Foot Ankle Int. 2007;27:542-8

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

UC

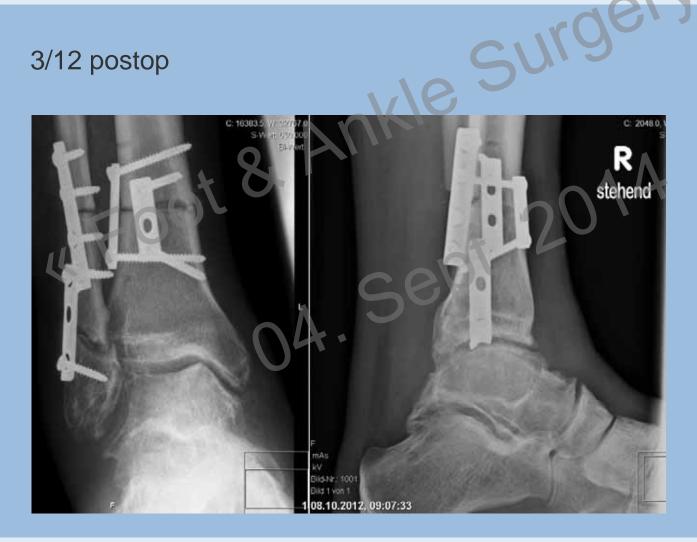
Surg

Literature

Study	LOE	Patients	Follow-up (years)	Surgical technique	Pain relief	Functional outcome	ROM
Cheng et al. (2001) [59]	IV	18 (18 ankles)	4.0 (2.1-6.8)	Medial opening wedge OT with oblique OT of the fibula (18)	24.4→47.5ª	25.2→41.0 ^b	n.a.
Harstall et al. (2007) [60]	IV	9 (9 ankles)	4.7 (1.3-7.3)	Lateral closing wedge OT (9)	16±8.8→30±7.1°	$48{\pm}16.0{\rightarrow}74{\pm}11.7^{\rm d}$	n.a.
Hintermann et al. (2011) [47]	IV	48 (48 ankles)	7.1 (2–15)	Medial closing wedge OT (45), lateral opening wedge OT (3)	41 patients pain-free, 6 patients VAS 2.1	$48 \rightarrow 86^{\rm d}$	41.2°→40.1°
Knupp et al. (2014) [6]	Π	92 (94 ankles)	3.6 (1.0–10.5)	Medial closing wedge OT (61), lateral closing wedge OT or medial opening wedge OT (33)	4.6±1.9→2.8±2.3°	55.6±17.2→72.8±18.9 ^d	n.a.
Knupp et al. (2012) [42]	IV	14 (14 ankles)	4.2 (2.0-8.2)	Medial closing wedge OT (14)	$4.1 \pm 1.7 \rightarrow 2.2 \pm 1.5^{\circ}$	$51.6 \pm 12.3 \rightarrow 77.8 \pm 11.8^{d}$	$25\pm12^\circ \rightarrow 29\pm9^\circ$
Lee et al. (2011) [70]	IV	16 (16 ankles)	2.3 (1.0-6.5)	Medial opening wedge OT with oblique OT of the fibula (16)	n.a.	$62.3{\pm}8.9{\rightarrow}82.1{\pm}11.4^{d}$	n.a.
Pagenstert et al. (2008) [56]	П	35 (35 ankles)	5.0 (3.0-10.5)	n.a.	7.0±1.6→2.7±1.6 ^e	38.5±17.2→85.4±12.4 ^d	32.8±14.0°→37.7±9.4°
Stamatis et al. (2003) [67]	IV	12 (13 ankles)	2.8 (1.0-4.9)	Medial closing wedge OT (7), medial opening wedge OT (6)	$14.6 \pm 10.5 \rightarrow 32.3 \pm 5.9^{\circ}$	$53.8{\pm}19.3{\rightarrow}87.0{\pm}10.1^d$	n.a.
Takakura et al. (1995) [68]	IV	18 (18 ankles)	6.9 (2.7–12.1)	Medial opening wedge OT (0)	$16.4 \pm 4.6 \rightarrow 34.6 \pm 5.3^{f}$	$39.3{\pm}4.1{\rightarrow}48.4{\pm}3.9^g$	n.a.
Takakura et al. (1998) [69]	IV	9 (9 ankles)	7.3 (2.3–13.2)	Medial opening wedge OT (9)	20.0±7.1→34.4±5.3 ^f	48.9±15.3→52.8±12.0 ^g	$62.9 \pm 9.6^{\circ} \rightarrow 54.5 \pm 9.8^{\circ}$

UNIVERSITÄT

58 y, male, teacher Recurrent ankle sprains for years Increasing pain anteromedial ankle bilat.



UNIVERSITÄT

UNIVERSITÄT

UNIVERSITÄT

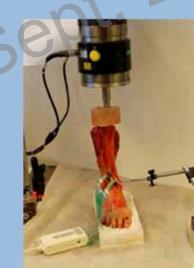
Extraarticular varus / valgus malalignment

- > Calcaneal osteotomy
- > Advantages
 - ease of fixation
 - no graft
 - reliable and rapid healing
- > Disadvantages
 - limited correction (> 1 cm translation)
 - weakening of Achilles lever arm
 - tibial nerve compression

Calcaneal Osteotomy

- realignment of the varus hindfoot by calcaneal osteotomies substantially contributes to normalize ankle contact stresses in pes cavovarus¹
 - Closing wedge (Dwyer) and Z-osteotomy (Malerba) without tuberosity lateralization for small correction (rotation only)
 - Lateral sliding and Z-osteotomy with tuberosity lateralization for large correction (translation and rotation)^{1,2}

¹Krause F. et al. Foot Ankle Int. 2010 Sep;31(9):741-6. ²Knupp M, et al. Tech Foot Ankle Surg.2008;7:90-95.



UNIVERSITÄT

supramalleolar versus calcaneal

No difference of efficacy "lateral closing SMOT versus lateralizing COT in pes cavovarus"¹

¹Schmid T. et al. Foot Ankle Int. 2013:34:1190-1197

UNIVERSITÄT

> failure case preop, 66y, male idiopathic fixed cavovarus deformity

u

UNIVERSITÄT

b

> failure case postop

UNIVERSITÄT

> failure case 1 year postop

=> correction not aggressive enough?
=> arthrosis too advanced?
=> indications exceeded?

Foot & Ankle Surgery: common problems – current therapies, Zurich, Sep 4, 2014

19:30:22

UNIVERSITÄT

preserving versus sacrificing

- > no comparative studies
- > no guidelines
- \Rightarrow literature?
- ⇒ personal experience?

UNIVERSITÄT

ne

preserving versus sacrificing

* 8. P	joint preserving realignment surgery	joint sacrificing AA or TAR
age	young (< 60)	old (>70)
arthrosis localization	focal / < 50%	global / > 50%
arthrosis severity	< grade 4?	grade 4
talar tilt	<10°	>10°
anterior talus sublux	-	+
ankle ROM, ligamentous stability	good	good (TAR), poor (AA)
neuro-arthropathy, incompliance	-	+ (AA)

6 UNIVERSITÄT

DEDN

Global ankle arthrosis

- > global
 - inflammatory arthritides: rheumatoid disease and seronegative spondyloarthropathies
 - hemophiliac, gouty crystalline deposition, and septic arthropathies

some posttraumatic, e.g pilon fractures

UNIVERSITÄT BERN

preserving versus sacrificing

+ 8. P	joint preserving realignment surgery	joint sacrificing AA or TAR
age	young (< 60)	old (>70)
arthrosis localization	focal / < 50%	global / > 50%
arthrosis severity	< grade 4?	grade 4
talar tilt ¹	<10°	>10°
anterior talus sublux	-	+
ankle ROM, ligamentous stability	good	good (TAR), poor (AA)
neuro-arthropathy, incompliance	- ;93:1243–8	+ (AA)

и

UNIVERSITÄT BERN

Conclusion

- > age and arthrosis' extent most important for decisionmaking: preserving / sacrificing ankle
- > if preserving realignment surgery:
 - early and aggressive (intraarticular plafond plasty, overcorrection 2-5 °) restoration of bony anatomy and alignment
 - realignment surgery where malalignment occurs
 - combine SMOT and COT when necessary

Thank you!

fabian.krause@insel.ch