Foot & Ankle Surgery: common problems – current therapies Zurich, Sep 4, 2014

UNIVERSITÄT

Symptomatic cavovarus foot – how can I salvage joints while balancing the foot?

Fabian Krause
Department of Orthopaedic Surgery
Inselspital, University of Bern

UNIVERSITÄT

> Presentation

- > Imbalance consequences
- lateral border overload
- anteromedial ankle overload
- ankle sprains
- => ankle arthrosis in longterm

UNIVERSITÄT Bern

> Biomechanics (ankle joint pressure in pes cavovarus)

neutral

cavovarus

Krause F, Windolf M, Schwieger K, Weber M. J Bone Joint Surg Br. 2007;89:1660-5

UNIVERSITĂ

> Clinical presentation (anteromedial ankle arthrosis)

UNIVERSITÄT

- > Indication for surgery
- ongoing symptoms (overload, sprains) despite nonop treatment
- recurrent ulceration (neuropathy)
- signs of cartilage degeneration (ankle arthrosis)
- pre-emptive? => ankle arthrosis risk doubles with every
 5° Meary's angle increase and 10 years of deformity's
 presence

Schmid T, Krause F. In progress: Correlation of ankle arthrosis and radiographic cavovarus deformity.

UNIVERSITÄ

> Biochemical T2* MR quantification of ankle arthritis in pes cavovarus.

Krause F, Klammer G, Benneker L, Werlen S, Mamisch T, Weber M. J Orthop Res. 2010; 28:1562-8

UNIVERSITÄ BERN

- > flexible or fixed deformity?
- > etiology
- neurologic (static or progressive?)
- idiopathic
- posttraumatic
- residual clubfoot
- > ankle arthrosis
- > patient's demands

- > Surgical options
- TN-joint release
- PL to PB transfer
- lateralizing TA
- heel cord lengthening
- plantar fascia release
- lateral ligament repair / reconstruction
- 1st toe Jones procedure
- lateralizing calcaneal osteotomy
- metatarsal dorsiflexion osteotomy

- > Surgical options
- TN-joint release
- PL to PB transfer
- lateralizing TA
- heel cord lengthening
- plantar fascia release
- lateral ligament repair / reconstruction
- 1st toe Jones procedure
- lateralizing calcaneal osteotomy
- metatarsal dorsiflexion osteotomy

1. Se

- > TN-joint release
- forefoot adduction

UNIVERSITÄ BERN

- > Surgical options
- TN-joint release
- PL to PB transfer
- lateralizing TA
- heel cord lengthening
- plantar fascia release
- lateral ligament repair / reconstruction
- 1st toe Jones procedure
- lateralizing calcaneal osteotomy
- metatarsal dorsiflexion osteotomy

- > PL to PB transfer
- preserved PL function
- weakens 1st ray plantarflexion
- strenghtens weak PB
- alternatively TP or FHL to PB

UNIVERSITĂ BERN

- > Surgical options
- TN-joint release
- PL to PB transfer
- lateralizing TA
- heel cord lengthening
- plantar fascia release
- lateral ligament repair / reconstruction
- 1st toe Jones procedure
- lateralizing calcaneal osteotomy
- metatarsal dorsiflexion osteotomy

- > Lateralizing TA to lateral cuneiforme
- Preserved function (4/5)
- Hindfoot stability
- lateral shift of ankle center of force
- generally in neurologic cavovarus feet

UNIVERSITÄ BERN

- > Surgical options
- TN-joint release
- PL to PB transfer
- lateralizing TA
- heel cord lengthening
- plantar fascia release
- lateral ligament repair / reconstruction
- 1st toe Jones procedure
- lateralizing calcaneal osteotomy
- metatarsal dorsiflexion osteotomy

- > Heel cord lenghtening
- equinus contracture
- Achilles lengthening (2cm, z-type)
- Gastroc recession (Strayer's, Bauman's)

UNIVERSITĂ BERN

- > Surgical options
- TN-joint release
- PL to PB transfer
- lateralizing TA
- heel cord lengthening
- plantar fascia release
- lateral ligament repair / reconstruction
- 1st toe Jones procedure
- lateralizing calcaneal osteotomy
- metatarsal dorsiflexion osteotomy

UNIVERSITÄT

- > Lateralizing calcaneal osteotomy
- lateral shift of weightbearing axis / center of force in ankle joint
- lateralize Achilles lever arm
- useful for recurrent ankle sprains

Malerba, F; De Marchi, F. Foot Ankle Clin. 10:523-540, 2005 Knupp, M et al.. Tech Foot Ankle Surg. 7:90-95, 2008 Krause F et al., Foot Ankle Int. 2010;31:741-7

UNIVERSITÄ

- > Tibial nerve palsy with lateralizing calcaneal osteotomy
- in peripheral neuropathies, i.e. CMT
- enlarged and more sensitive tibial nerve
- compressed by inferior flexor retinaculum
- -> compartment release

Krause FG, Pohl MJ, Penner MJ, Younger AS. Foot Ankle Int. 2009;30:258-61

- > Surgical options
- TN-joint release
- PL to PB transfer
- lateralizing TA
- heel cord lengthening
- plantar fascia release
- lateral ligament repair / reconstruction
- 1st toe Jones procedure
- lateralizing calcaneal osteotomy
- metatarsal dorsiflexion osteotomy

- > Metatarsal dorsiflexion osteotomy
- reduces plantarflexion of medial forefoot,
 MT I-III and hindfoot varus
- > alternatively:
- reversed Cotton osteotomy (medial cuneiforme)
- 1st TMT fusion (arthritic)

example: 55 years, male, office work

- > Poliomyelitis in childhood
- > 1/2 year anteromedial ankle pain and swelling
- > progressive equinus
- > no hindfoot sprains

UNIVERSITÄT

clinical findings

- > moderate cavovarus deformity
- > ankle d/p 0-5-35°, subtalar 1/3 reduced
- Dorsiflexion painful
 - > TA, TP- and peroneals functional
 - > Coleman-Block-Test: fixed deformity
 - > global muscle atrophy
 - > no hindfoot instability

UNIVERSITÄ

decision making

- > op
 - younger age
 - neurologic etiology
 - fixed deformity
 - anteromedial ankle arthrosis (2-3°)
- > non-op
 - low activity level

UNIVERSITÄT

preop

> Op-technique

Arthrotomy: anteromedial missing cartilage 15 x 10 mm /talar and tibia, residual joint good

Cheilectomy, microfracturing

Achilles lengthening 2 cm

Lateralizing (sliding) calcaneal osteotomy, lateral wedge 5 mm, lateralization 8 mm

PL to PB transfer, TA to lateral cuneiform

dorsiflexion MT I osteotomy (wedge base 5 mm)

UNIVERSITÄ

postop

UNIVERSITÄT

5 years postop

UNIVERSITÄT BERN

Literature

Author		Mean Age at Surgery	Etiology	Flexibility	Ankle Arthritis at Surgery	Procedure	Mean Follow-up (months)	Outcome (Mean)	Radiographic Findings at Follow-up	Evidence
Sammarco et al, 2001	21 15 pts	33	All neurologic	Flexible	None	А, В, Н	71	AOFAS: from 46 to 89 Maryland Foot Score: from 72 to 90	Lateral talo–MT I angle decreased 6.5 degrees Arch height decreased 6.8 mm	III
Fortin et al, 2002	13 10 pts	51	All idiopathic	Flexible and rigid	Stage 1-3	A, B, D, F	33	Karlsson score: from 33 to 82	Not reported	III
Vienne et al, 2007	9 8 pts	25	Idiopathic and residual clubfoot	Flexible	Stage 0-2	A, C, D	37	AOFAS: from 57 to 87	Not reported	III
Ward et al, 2008	41 25 pts	16	All neurologic	Flexible	None	B, C, G, H, K	312 (26 years)	SF36 mental: 50 SF36 physical: 38 FFI pain: 35 FFI disability: 41 FFI activity limit: 22	OA most often in TMT 1 joints	IV
Kroon et al, 2009	19 15 pts	40	Idiopathic 11 Neurologic 4	Flexible and rigid	None	2xA, B, C, E, F, G, I	50	AOFAS: 83 FFI pain: 13 FFI activity limit: 13	Talo-first metatarsal angle from 22 to 17 degrees	IV
Irwin et al, 2010	22	48	All idiopathic	Rigid	Group 1 stage 0-1 Group 2 stage 2-3	A, B, C, D, G, H	60	AOFAS group 1: 86, group 2: 59 VAS: 21 and 40 resp.	Arthritis progression mainly in group 2	IV
Maskell et al, 2010	29 23 pts	43	All idiopathic	Rigid	None	A, B, C, D, E, J	51	AOFAS: from 45 to 90	Talo-first metatarsal angle from 9.9 to 2.4 degrees	III

- retrospective case series for evaluation of cavovarus realignment long-term outcome
 - > evidence of a lateral shift of the joint contact pressure or progression of arthrosis
 - effect reliable and durable
 - can anterior debridement / osteophytectomy in conjunction with cavovarus realignment relieve ankle impingement and symptoms of medial ankle arthrosis

UNIVERSITÄ

- > 11/1997 to 11/2008
- > 13 patients with cavovarus deformity
 - > 11 male, 2 female
 - > 6 neurogenic, 7 idiopathic
 - > average age 49.3 years
 - mild to severe anteromedial ankle arthrosis (grades 1 to 3a, 2.2 on average)

Takakura Y, JBJS Br, 1995;77B:50

procedure	number
anterior debridement	13
lateralizing calcaneal osteotomy	13
dorsiflection osteotomy	MT I: 7 MT I-III: 2
PL to PB transfer	8
lateralization of TA	9
Achilles lengthening	4
Fibula shortening	1
lateral ligament reconstruction	0

- > average follow-up of 83 months, (range 33 134)
- > AOFAS Ankle Hindfoot Score from 45 to 75 points on average (p < 0.001)
- gain in ankle dorsiflexion (8 degrees on average, p < 0.001)</p>
- no anterior impingement
- no lateral hindfoot instability

UNIVERSITÄT BERN

- grading of the anteromedial ankle arthrosis remained unchanged during the 83 months follow-up period
- postoperative lateral talo-1st metatarsal angle decreased significantly
- > complications: 1 CRPS
- > 2 failures (ongoing varus tilt of talus): 1 TAR, 1 subtalar fusion with lateral ligament reconstruction and deltoid release

UNIVERSITÄT BERN

> successful case

UNIVERSITÄ BERN

> successful case

UNIVERSITÄT BERN

> successful case 2 years postop

- reliable and durable reduction of the deformity
- no progression of the anteromedial ankle arthrosis (lateral shift of the joint contact pressure after realignment)
- realignment per se provides hindfoot stability

- > good and durable outcome
- > full correction of varus talar tilt is the goal (but not mandatory)
- > no arthrosis progression

