Metal Artifact Reduction -CT Techniques

Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland

University of Zurich¹²¹ SSSR Swiss Society of Musculoskeletal Radiolog

Postoperative CT – Metal Implants

CT is accurate for assessment of hardware integrity, wear,

fractures, heterotopic....

→ Metal Implants degrade CT images

cement extrusion next to nerve root

ant iliopsoas Impingement

loosening

Outline: Metal Artifact Reduction

- Basic Principles
- Iterative Reconstruction versus

Filtered Back Projections

- specific Metal Artifact Reduction Software
- Edge Effects
- Dual-Energy Computed Tomography

Metal-induced Artifacts

Metal Implants degrade CT images due to two main Artifact Components

- photon starvation due to absorption of x-ray photons => image noise
- beam hardening due to absorption of low-energy photons => dark streaks

Additional Metal Artifact Components

• scattering, partial volume and edge gradient effects

Beam-Hardening Artifact

Pessis et al. Virtual Monochromatic Spectral.... RadioGraphics 2013

- lower-energy photons are absorbed more rapidly than higher-energy photons
- the detected x-ray beam contains the higher-energy portion of the spectrum, resulting in dark streaks next to metal structures

Basic Principles-Metal Artifact Reduction

Hardware Composition

<u>Metal-induced Artifacts:</u> Titanium < Cobalt-Chrome < Stainless-Steel → related to Mass Attenuation Coefficient

University of Zurich^{™™} Lee et al. Overcoming Artifacts ... Radiographics 2007

Patient Positioning

→ X-ray beam should traverse smallest possible cross-sectional area of implant

Effect of Tube Voltage & Current

Section Thickness

- partial volume artifacts can best be avoided by acquiring thin sections
- thicker sections during image reconstruction reduces image noise and decreases metal-related artifacts

Critical Role: Kernel-Selection

AL

Bone Kernel

Bone Kernel

Soft Tissue Kernel

→ standard or smooth reconstruction filter is preferred compared to edge-enhancing algorithms

Iterative Reconstruction

How To 🕑		
PubMed	 iterative reconstruction metal artifact reduction 	
	RSS Save search Advanced	
Displa	y Settings: Summary, 50 per page, Sorted by Recently Added	<u>Send to:</u>
Resu	lts: 29	
🗆 <u>Ite</u>	erative metal artifact reduction: Evaluation and optimization of technique.	
1. Si Sk PM Re 2. Aç Ra PM Re	ubhas N, Primak AN, Obuchowski NA, Gupta A, Polster JM, Krauss A, Iannotti JP. keletal Radiol. 2014 Aug 30. [Epub ahead of print] MID: 25172218 [PubMed - as supplied by publisher] elated citations CT and MRI of hip arthroplasty]. gten CA, Sutter R, Pfirrmann CW. adiologe. 2014 Jul;54(7):715-25; quiz 726. doi: 10.1007/s00117-014-2693-8. German. MID: 24973123 [PubMed - in process] elated citations	4
Ging Sking S	otal hip prosthesis CT with single-energy projection-based metallic artifact reduction: ne visualization of specific periprosthetic soft tissue structures. ondim Teixeira PA, Meyer JB, Baumann C, Raymond A, Sirveaux F, Coudane H, Blum A keletal Radiol. 2014 Sep;43(9):1237-46. doi: 10.1007/s00256-014-1923-5. Epub 2014 Jun 10. MID: 24910125 [PubMed - in process] elated citations	impact on

Iterative Reconstruction

Summary - Iterative Reconstruction

Iterative Frequency Split-Normalized (IFS) Metal Artifact Reduction

rojection

Iterative reconstruction has a high potential to reduce metal artifacts

University of Zurich[™]

Morsbach et al. Reduction of Metal artifacts from ... Radiology 2013

uniklinik balgrist

Specific Metal Artifact Reduction Software (MAR)

Specific Metal Artifact Reduction Software (MAR)

O-MAR (Orthopedic Metal Artifact Reduction, Philips):

- first step is to create a metal only image - all pixels set to zero except for those pixels categorized as metal

- repetitive loop where the output correction image is subtracted from the original input image

Specific Metal Artifact Reduction Software (O-MAR)

FBP

MAR software is valuable for soft tissue: improvement of anatomical visualization e.g. intrapelvic anatomy and lymphadenopathy

Li H et al. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy Med Phys. 2012

Metal Artifact Reduction Software Must Be Used with Caution

Metal Artifact Reduction Software Should Be Used with Caution

Standard

O-MAR

- O-MAR does not improve visualization of metal-to-bone interface
- O-MAR reduces metal artifacts in soft tissue

University of Zurich[™] Li H et al. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy Med Phys. 2012

Edge Effects

University of Zurich^{™™}

Edge Effects – Kernel Optimiziation

Edge Effects – Kernel Optimiziation

I-50 Kernel

Dual Energy – CT

Virtual Monochromatic Spectral Imaging versus Polychromatic Spectral Imaging

- x-ray tube: polychromatic x-ray beam → photons with a range of energies, maximum energy expressed as kilovolt peak
- monochromatic = monoenergetic => virtual CT image reconstruction of xray photons at a single energy level
- → Reduction of Beam-Hardening Effect

Dual Energy CT

exclusively soft tissue kernel

for sequential single-source DECT

polychromatic

monochromatic 142keV

Dual-energy CT allows an efficient reduction of metal artifacts using high-energy monochromatic extrapolation

Mangold et al. Single-Source Dual-Energy CT Invest Radiol 2014

Spin, -0 Titt -87

Dual Energy

140 keV

Pessis et al. Virtual Monochromatic ... RadioGraphics 2013

80 ke

Improve visualization of metal-to-bone interface -> higher monochrom. energy

Improve visualization of soft tissue → lower monochromatic energy levels (↑contrast & ↓noise)

Summary Dual Energy

dual-energy CT techniques can reduce metal artifact due to beamhardening reduction

radiation exposure similar to standard polychromatic protocol

financial investment and maintenance cost \rightarrow DECT scanners are not widely available, restricted application

Conclusion

- Protocol should be tailored
- Consider first basic principles to reduce Metal Artifacts
- Commercially available specific MAR algorithm are appropriate for soft tissue, not metal-to-bone interface
- Dual-energy CT can reduce metal related artifacts

Thank You

