

MRI Metal Artifact Reduction

PD Dr. med. Reto Sutter

University Hospital Balgrist Zurich University of Zurich

OUTLINE

Metal Artifact Reduction Basics and Protocol Optimization

Metal artifact reduction

Is this Patient suitable for MR Imaging?

Magnetic Susceptibility

 Diamagnetic materials slightly <u>oppose</u> the applied magnetic field

- Calcium, water, and most organic materials

 Paramagnetic materials slightly <u>enhance</u> the local magnetic field

- Titanium, some blood degradation products, gadolinium contrast

- Ferromagnetic materials substantially augment the external magnetic field
 - Iron, cobalt, and nickel

Is this Patient suitable for MR Imaging?

Predominant types of artifacts

- Signal loss (due to spin dephasing)
- Geometric distortion and Displacement artifacts (due to frequency variations; can induce signal loss and pile-up)
- Insufficient fat suppression (due to frequency variations)

Increased bandwidth

University of Zurich^{uth}

Higher bandwidth decreases signal displacement

Higher bandwidth: Hz/pixel ↑ Ηz \downarrow \downarrow $\downarrow \downarrow \downarrow \downarrow \downarrow$

Optimization for Clinical Use:

- Increase excitation and readout bandwidth
- Thin sections, small voxel size, small FOV
- 1.5T much better than 3T
- Fast spin echo (no gradient-echo sequence or 3D-sequence)
- Long Echo-train-length
- Frequency encoding gradient parallel to long axis of prosthesis/implant
- Fat saturation?

Insufficient fat saturation

Spondylodesis T1 fat sat

Total hip arthroplasty T1 fat sat

X failed fat saturation

Fat saturation techniques

University of Zurich^{u™} Sutter R., et al. Radiology 2012; 265: 204-14. Blankenbaker D.G., et al. AJR 2008; 190: W1–W7.

uniklinik balgrist

MARS <u>Metal Artifact Reduction Sequence</u>

1. STIR WARP

University of Zurich

Ulbrich EJ et al. AJR 2012 Dec;199(6):W735-42.

uniklinik balgrist

STIR WARP

2. Dixon technique

Based on different resonance frequency of water and fat

in phase Advantage :

Stable for B₀ and B₁ inhomogeneities
 Extensive anatomic coverage feasible
 4 image contrasts in a single sequence
 Disadvantage :

- Residual artifacts at bone-metal interface

Low R.N., et al. J MRI 2011; 33: 390-400. Rampton J.W., et al. AJR 2013; 201: 1303-1308.

Dixon technique

tra T1 fat sat highBW after iv gadolinium

×

failed fat saturation

Dixon (water image) after iv gadolinium

University of Zurich^{u™}

3. View-Angle Tilting

View-angle tilting (VAT)

Additional compensation gradient shifts the view-angle during readout

View-angle displacement cancels in-plane displacement

View-Angle Tilting

+ high rf pulse and readout bandwidth

+ VAT

View-Angle Tilting

4. Through-plane artifacts

Through-plane artifacts

Lu W, et al. Magn Reson Med 2009; 62: 66-76. Sutter R, et al. Radiology 2012; 265: 204-14.

SEMAC for Total Hip Arthroplasty

Sutter R, et al. Radiology 2012 Oct;265(1):204-14.

SEMAC for Total Knee Arthroplasty

Sutter R, et al. AJR 2013 Dec; 201:1315–1324.

uniklinik

SEMAC for Total Knee Arthroplasty

Periprosthetic osteolysis better seen at SEMAC

University of Zurich^{utt} Liebl H, et al. J Magn Reson Imaging 2014 Jun 10. Fritz J, et al. Radiographics 2014;34(4):E106-32.

Compressed sensing

Mathematical concept that creates high-resolution data sets from low-resolution samples

Nittka M, et al. Proc. Intl. Soc. Mag. Reson. Med. 21 (2013): 2558.

MRI with knee prosthesis at 3T

Bachschmidt T, et al. J MRI 2014 (Aug) online before print

TAKE HOME MESSAGE

- MR imaging of metal implants is feasible
- New MRI techniques have clinically relevant advantage and will become even faster in the next 5 years
- MRI is part of diagnostic algorithm for patients with total hip / knee arthroplasty at Balgrist

Reto.Sutter@balgrist.ch

